Cikrmomca Acta, 17 (i976) 85-96 © Elsevier Scientific Publishing Company, Amsterdam - Printed in Belgium

A STUDY OF THE REACTION $Na_2SO_4 \cdot 10H_2O \rightarrow Na_2SO_4 + 10H_2O$ **IN THE TEMPERATURE RANGE 0 TO 25°C**

S. EL D. HAMAD

Department of Geology, University of Khartoum (Sudan) *(Eka%cd 23* **January 1976)**

ABSTRACT

Thermogravimetry was used to obtain data on the isothermal rate of dehydration and hydration of the reaction $Na₂SO₄ \cdot 10H₂O \rightarrow Na₂SO₄ + 10H₂O$ in the **temperature range 10 to 25°C. The thermodynamic functions,** ΔH **,** ΔG **and** ΔS **were caIcuIated and compared with data in the literature_ The dissociation pressures of** $Na₂SO₄ \cdot 10H₂O$ at temperatures in the range 0 to 25[°]C were measured in a volumetric dissociation apparatus. The results obtained were compared with those using thermo**gravimetry and the accuracy of the two techniques was assessed-**

INTRODUCTION

The salt hydrate, known in natural deposits as Glauber's salt or mjrabilite, Na₂SO₄ lOH₂O, is an efflorescent mineral which under conditions short of equilibrium transforms to the anhydrous phase thenardite, Na_2SO_4 . Work of early $investigators¹⁻⁶$ was centred on the measurement of its dissociation pressure. Their attention was concentrated on refining different volumetric techniques.

In the present work dehydration-hydration studies on artificial $Na₂SO₄$. **lOH,O were undertaken in order to revise the existing data- All the experiments were** done in the absence of air and X-ray powder diffraction and/or optical microscopy **were used as a means of identification. The rate of attainment of equilibrium for both the dehydration and hydration stages cf the reaction in the temperature range 10 to 25°C was determined as a function of imposed water vapour pressure_ From the data provided the equilibrium vapour pressures at various temperatures were** determined and the enthalpy was calculated.

For the sake of comparison of results, a further series of experiments were **performed in a volumetric dissociation apparatus where the dissociation pressure of** the salt hydrate was measured at different temperatures in the range 0 to 25[°]C. The accuracy of the two techniques was assessed.

EXPERIMENTAL

Mafen-a&

B-D-H. Analar Grade sodium suiphate deeahydrate was used in all the experiments undertaken. It contains not less. *than 99% Na,SO,-* **lOH,O_ -On** exposing a weighed portion of the crystalline sample to the dry atmosphere, 25°C, the loss in weight after 3 h was 55.25% which was equivalent to 9.95H₂O moles per mole of Na_2SO_4 -10H₂O. Using Cu-K_z radiation an X-ray powder photograph of the residue showed that the values of the Bragg d-spacings were in reasonable agreement with those of orthorhombic thenardite, Na₂SO₄ (A.S.T.M. card No. 5-0631).

In view of the efflorescent character of the salt hydrate, great care was taken to avoid the loss of weight by the samples during the procedures prior to the start of the **experiments_ The samples were weighed in a cool room and they were introduced immediately into the s_pecimen chamber of the apparatus.**

Apparatus

A thermogravimetric balance⁷ was used to obtain dehydration-hydration data on $Na₂SO₄ \cdot 10H₂O$. For the experiments performed at temperatures less than 25[°]C, the apparatus was modified so that low temperatures could be obtained inside the balance chamber. The furnace was replaced by a pyrex-glass condenser through which **cold** *h.er was dowed* **to circulate_ The condenser was connected via a-rubber tnbe to a 5 mm copper tube designed in the shape of a spiral which was placed in a vessel** containing water and ice. The other end of the spiral was connected to a water tap. **This technique aIIowed cold water to circulate around the specimen chamber_ The** rate of flow of water was controlled with the water tap; constant rates of flowing water gave temperatures accurately to within $\pm 0.5^{\circ}$ C which were measured with the Pt/Pt-13% Rh thermocouple. In increasing or decreasing the temperature, the rate of **flow of water was changed and approximately IO min were allowed for each desired** temperature to reach a constant value before the start of the experiment.

EXTENT OF DEHYDRATION AND HYDRATION ON $Na₂SO₄ \cdot 10H₂O$

To explore the extent of dehydration and hydration on Na_2SO_4 -10H₂O a series of preliminary experiments were carried out on 200-mg portions of $Na₂SO₄$. 10H₂O. In one experiment the specimen was dehydrated under vacuum conditions and over P_2O_5 at a temperature of 16.3°C. The data are illustrated in Fig. 1, curve A. On another portion of Na₂SO₄ · 10H₂O, an experiment was carried out at 22.0°C and as a function of imposed water vapour pressure. The vapour pressure in the dehydration process was 12.00 mm **Hg** and in the rehydration reaction it was 19.7 mm Hg. Plots of the percentage loss and gain in weight as a function of time are shown in Fig. 1, curves **B** and C.

The results showed that the dehydration over P_2O_5 was very fast in spite of the fact that the experiment was conducted at a low temperature. On the other hand, in the presence of water vapour the reaction was much slower. Although the dehydration and the reversible hydration processes were performed at different vapour pressures, the rate of the two reactions was almost the same.

The total amount of water involved in this reversible reaction was equivalent to 9.30 moles of H₂O per mol of Na₂SO₄ · 10H₂O. In view of the efflorescent character **of the-&B-hydrate, it is pussiilt that at least a fix&ion of the difference of 0_70 moles**

Fig. 1. Comparison of dehydration and hydration rates for Na₂SO₄ 10H₂O. A, dehydration under **vacuum conditions at 163 %; B, dehydration at 22% vapour pressure 1200 mm Hg; C, hydration at 22-c vaponr pressure 19.7 mm Hg.**

of Hz0 had been iost from the specimen during the short time taken between its weighing in the analytical balance and its introduction into the apparatus.

CRITICAL VAPOUR PRESSURES OF THE REACTION $Na_2SO_4 \cdot 10H_2 \rightleftharpoons Na_2SO_4 + 10H_2O$

Method

A series of experiments on sodium sulphate decahydrate were carried out in absence of air in order to determine the CriticaI vapour pressures of the reaction, $Na₂SO₄ \cdot 10H₂O \rightleftharpoons Na₂SO₄ + 10H₂O$ at temperatures in the region (10-25)^oC. A sample weighing 200 mg was dehydrated in vacuum and over P_2O_5 until the weight **loss was equivzdent to a state of approximately** half dehydration_ **The tap counecting** the vacuum pump with the P_2O_5 trap was then closed, and while the system was still **uuder vacuum the:desired temperature was brought to a constant value inside the** specimen chamber. Vapour pressure was imposed and four readings of weight loss were recorded every 5 min. From these measurements the average loss of weight per minute was obtained. The vapour pressure was then increased, and in a similar way, the rate of weight loss at this vapour pressure was obtained. Measurement of the rate **of weight change as a function of increased vapour pressure was maintained in** *the same maker until* **equilibrium iad been reached and the specimenbegan to hydrate_**

Results

Data expressed in microgram per minute at half dehydration-hydration and as functions of imposed water vapour are plotted in Fig. 2.

Fig. 2. Reaction rates of dehydration and hydration for $Na₂SO₄ \cdot 10H₂O$ at a state of half dehydration and as functions of imposed water vapour pressure. A, At 13.0°C; B, at 17.2°C; C, at 23.1°C.

It is clear from these results that the rates of dehydration and hydration outside the regions of the equilibrium vapour pressures showed linear relationship with vapour pressure. However, in the regions close to the critical vapour pressures, the rates had decreased to considerable low values. The equilibrium vapour pressures of the reactions were taken as those vapour pressures corresponding to zero rates:

Using the integrated form of Van't Hoff's equation

$$
\ln\frac{P_2}{P_1}=-\frac{\Delta H}{R}\left[\frac{1}{T_2}-\frac{1}{T_1}\right]
$$

values of $\ln P$ (mm) were plotted against $T(K)^{-1}$ as shown in Fig. 3. From the slope of the straight line the heat of hydration was calculated.

Fig. 3. Temperature dependence of the vapour pressure for the reaction $Na₂SO₄$ ⁺ $10H₂O=$ Na₂SO₄+10H₂O.

 $slope = 2.716 \times 10^3$

.. In the temperature range studied the heat of hydration

 $= -2.716 \times 10^{3} \times 2.3026 \times 1.986$

 $= -12.470$ kcal mol⁻¹ H₂O

Applying this value to all the water held by $Na₂SO₄$ when it is fully hydrated to $Na₂SO₄ \cdot 10H₂O$, the heat of the reaction

 $Na₂SO₄+10H₂O \rightarrow Na₂SO₄ \cdot 10H₂O$ will be $\Delta H = -124.700$ kcal

The free energy changes ΔG for a reaction such as $MX + nH_2O \rightarrow MX \cdot nH_2O$ is given by the expression

 $\Delta G = \Delta G^{\circ} R T \ln K$

Where ΔG° is the standard free energy of hydration and K is the equilibrium constant of the reaction. At equilibrium,

$$
\Delta G = 0 \qquad \therefore \Delta G^{\circ} = -RT \ln K
$$

Assuming that at standard state the solid phases are pure substances and the water vapour behaves as an ideal gas, then the equilibrium constant will be proportional to the partial pressure P_{H_7O} .

For the equilibrium $Na_2SO_4(s) + 10H_2O(g) \rightleftharpoons Na_2SO_4 \cdot 10H_2(S)$

$$
\Delta G^{\circ} = -RT \ln \frac{1}{P^{10}} = RT \ln P^{10}
$$

In this equation P is the critical vapour pressure of the reaction in atmospheres. $T = 298.16^{\circ}$ K and $R = 1.986$ cal deg⁻¹ mol⁻¹.

From the plot of $\ln P$ vs. $T(K)^{-1}$ of Fig. 3, the equilibrium vapour pressure at 25°C was obtained.

 $P = 19.72$ mm Hg = 0.02622 atm. $\therefore \Delta G^{\circ} = 1.986 \times 2.3026 \times 298.16 \times 10 \log 0.02622 = 21.660 \text{ kcal.}$ $= 2.166$ kcal mol⁻¹ H₂O $i.e.,$

According to Kirchoff's equation, $\Delta H_T = \Delta H_{298}^{\circ} + \int_{298}^{T} \Delta C_p dT$, the heat evolved or absorbed in a reaction is slightly dependent on temperature but for a short range of temperatures, ΔC_p is very small, hence ΔH is approximately constant.

Using the defining equation $\Delta G^{\circ} = \Delta H^{\circ} - T \Delta S^{\circ}$ and the values of ΔG° and ΔH obtained above, the entropy of hydration ΔS° was calculated.

 $\Delta S^{\circ} = \frac{\Delta H - \Delta G^{\circ}}{T} = \frac{-124700 + 21660}{298.16}$ $=$ -345.30 cal deg⁻¹ mol⁻¹.

Since for the reaction $Na₂SO₄(s) + 10H₂O(g) = Na₂SO₄ \cdot 10H₂O(S)$

 $\Delta S_{298}^{\circ} = S_{Na_2SO_4 \text{10H}_2O}^{\circ} - (S_{Na_2SO_4}^{\circ} + 10 S_{H_2O}^{\circ})$
 $S_{Na_2SO_4(S)}^{\circ} = 35.73$ cal deg⁻¹ mol⁻¹ (Latimer, 1952)
 $S_{H_2O(g)}^{\circ} = 45.106$ cal deg⁻¹ mol⁻¹ (Latimer, 1952) ... The entropy of $\text{Na}_2\text{SO}_4 \cdot 10\text{H}_2\text{O(S)}$ at 298.16 K $=$ -345.3+35.73+451.06 = 141.50 cal deg⁻¹ mol⁻¹.

It is of interest to compare the results of the present investigation with similar results obtained by other research workers who calculated the entropy of the sodium

sulphate decahydrate using the known entropy of water vapour together with the dissociation pressure of the decahydrate and the entropy and heat of solution of $Na₂SO₄$. These authors determined also the entropy of $Na₂SO₄ \cdot 10H₂O$ from low temperature heat capacities using the expression $S_{298}^{\circ} = S_0^{\circ} + \int_0^{298} C_{\rho} d \ln T$.

The results are summarised below:

Brodale and Giauque claimed that there was an error in the $\int_0^T C_p d \ln T$ value obtained by Pitzer and Coulter. After correcting the data, the results showed a residual entropy of 1.54 e.u. instead of 1.70 e.u. The entropy of $Na₂SO₄$ 10H₂O obtained in the current investigation is 1.55 e.u. higher than the value calculated by Brodale and Giauque⁹ from the integral of $\int_0^T C_p d \ln T$. This discrepancy is in close agreement with the values obtained by the various investigators. It is also close to the entropy of $R \ln 2$ cal mol⁻¹ which Ruben et al.¹⁰ believed to be due to the disorder in Na₂SO₄.10H₂O.

THE DISSOCIATION PRESSURE OF Na₂SO₄-10H₂O

Method

An experiment was performed in absence of air and in the temperature range $(0-25)$ °C to measure directly the decomposition pressure of the crystalline Na₂SO₄. $10H₂O$ and the vapour pressure of the saturated water solution of $Na₂SO₄ \cdot 10H₂O$. The usual static technique of measuring the vapour pressure was used. The apparatus, a schematic diagram of which is shown in Fig. 4. consisted of a sample tube, a manometer and a P_2O_5 trap connected to a high vacuum oil pump. The sample tube containing approximately 100 g of $Na₂SO₄ \cdot 10H₂O$ was placed in a thermostatically controlled waterbath. The temperature of the stirred water was measured with a mercury-in-glass thermometer which gave readings to within ± 0.1 °C. To obtain 0 °C the waterbath was filled with ice, and 30 min were allowed to enable the sample to reach this temperature before the equilibrium vapour pressure was measured. The ice was then removed from the waterbath and the desired temperatures above 0°C were obtained by switching on the heating element and adjusting the thermostat control.

To ensure the absence of air, the apparatus was pumped briefly at certain risking intervals, and the vapour pressures at the appropriate temperatures were then allowed to reach equilibrium before they were recorded. All the measurements were made at temperatures lower than that of the surrounding atmosphere. This was to

Fig. 4. Schematic diagram of apparatus for measuring the dissociation pressure in the system $Na₂SO₄ \cdot 10H₂O = Na₂SO₄ + 10H₂O₄$

avoid the danger of condensation_ At the same time part of the tube connecting the specimen with the manometer and P_2O_5 trap was made as short as possible from a **tubing of narrow diameter_**

The values of the vapour pressure up to 13_00 mm Hg were measured with an oil manometer, but for measurements of higher vapour pressures. it was replaced by a mercury manometer which could be read to the nearest 250 microns,

Results

The results of the dissociation pressure measurements for the reactions, $Na₂SO₄ \cdot 10H₂O = Na₂SO₄ + 10H₂O(V)$ and for saturated solution of $Na₂SO₄$. **IOH₂O** = vapour, obtained in a similar manner using the same apparatus, are plotted **in Fig. 5. It is evident that the plots lie on two smooth curves A and B_ Using the** integrated form of Van't Hoff's equation,

$$
\ln\frac{P_2}{P_1}=-\frac{\Delta H}{R}\bigg[\frac{1}{T_2}-\frac{1}{T_1}\bigg],
$$

values of $\ln P$ were plotted against $T(K)^{-1}$, Fig. 6.

From the slopes of the two graphs A and B of Fig. 6 the value of ΔH was ${\bf calculate}$ for each reaction. \mathcal{L}^{max} and \mathcal{L}^{max} and \mathcal{L}^{max} and \mathcal{L}^{max} Albanya ya T

Fig. 5. Dissociation curve of the salt hydrate $Na₂SO₄$ 10H₂O in absence of air. A, Equilibrium $Na₂SO₄$ (10H₂O-Na₂SO_{4(s)}-water vapour; B, equilibrium Na₂SO_{4(s)} 10H₂O-saturated solutionwater vapour.

 (A) The heat of dissociation of $Na_2SO_4 \cdot 10H_2O = Na_2SO_4 + 10H_2O$

 $\Delta H = 3.00 \times 10^3 \times 1.986 \times 2.3026$ $= 13.620$ kcal mol⁻¹ H₂O

The heat of vaporisation of water solution saturated with $Na₂SO₄ \cdot 10H₂O$ (B)

 $\Delta H = 2.786 \times 10^3 \times 1.986 \times 2.3026$ $= 10.410$ kcal mol⁻¹ H₂O

The point of intersection of the two straight lines Fig. 6, representing the temperature dependence of the vapour pressure for the reactions $Na₂SO₄$. $10H_2O(S) = Na_2SO_4(S) + 10H_2O(V)$ and $Na_2SO_4 \cdot 10H_2O$ saturated solutionvapour, lies at 32.25°C and at a vapour pressure of 30.55 mm Hg. These figures are in close agreement with the established values of 32.28° C and 30.80 mm Hg obtained for the quadruple point where $Na₂SO₄ \cdot 10H₂O$, $Na₂SO₄$, saturated solution and water vapour are in equilibrium¹¹.

Fig. 6. Plots in P (mm) against $T(K)^{-1}$. A, equilibrium $Na_2SO_{4\omega}$: 10H₂O-Na₂SO₄-water vapour; B, equilibrium $Na₂SO₄₍₁₎$ 10H₂O-saturated solution-water vapour.

CONCLUSIONS

The results obtained using the technique of thermogravimetry showed that the highly efflorescent salt hydrate $Na₂SO₄ \cdot 10H₂O$ loses and regains approximately all its water content in a single stage. In a series of isothermal experiments at temperatures in the range 10 to 25°C the equilibrium vapour pressures were determined for the reaction $Na_2SO_4 \tcdot 10H_2O = Na_2SO_4 + 10H_2O$. These data gave the heat of hydration = 12.470 kcal mol⁻¹ H₂O. Other thermodynamic functions calculated were in accord with those of other investigators. The amount of heat of hydration indicates that the water molecules are weakly bound in the crystal structure of Na₂SO₄ - 10H₂O. and which is a state $\label{eq:3} \begin{split} \mathcal{L}_{\mathcal{A}}(\mathcal{A},\mathcal{A})=\mathcal{L}_{\mathcal{A}}(\mathcal{A},\mathcal{A})\end{split}$

It is of interest to compare the data obtained in the present investigations with those reported in the literature. The dissociation pressure of $\text{Na}_2\text{SO}_4 \cdot 10\text{H}_2\text{O}$ at 25 °C obtained from Fig. 6 after extrapolation, is 18.62 mm Hg compared with the equilibrium vapour pressure of 19.72 mm Hg derived for the equilibrium reaction $Na₂SO₄ \cdot 10H₂O \rightleftharpoons Na₂SO₄ + 10H₂O$ which was performed in the thermogravimetric balance.

The table below contains some of the results obtained in comparison with those

of other workers, viz, the equilibrium vapour pressures in mm Hg at different temperature:

It is clear from the above table that the results obtained in the current investigation using the static method of measuring dissociation pressures are consistent with the data of other investigators who used similar techniques. But most of these values are slightly lower than those obtained in the present study in the thermogravimetric balance. These slight discrepancies may be due to certain factors and limitations in the dissociation apparatus:

(a) In this apparatus equilibrium for the reaction is approached from one side only and it is difficult to visualise how closely equilibrium is reached. On the contrary this difficulty is non-existent in the technique of the thermobalance where equilibrium can be approached from both sides with very low rates of reaction.

(b) As indicated by Wilson⁴ salt hydrates approach equilibrium with extreme slowness if they are left undisturbed. In the present study the values of the dissociation pressures of $Na₂SO₄ \cdot 10H₂O$ were recorded 20 min after the desired temperatures were brought to constant values. Since no changes were observed in the position of the oil in the manometer after this period, the readings recorded were taken as the true equilibrium pressures.

In the light of the results obtained in the present study one may conclude that the technique of thermogravimetry had yielded results of considerable accuracy. In comparison with the data obtained using the volumetric dissociation apparatus, one may add, that in spite of the agreement of there data with those reported elsewhere, the difficulties and limitations of this technique should always be borne in mind when experiments of this nature are contemplated.

ACKNOWLEDGEMENTS

The author wishes to thank Dr. J. D. C. McConnell for his help and advice and the Department of Mineralogy and Petrology, Cambridge, for providing the facilities for the research.

REFERENCES

- 1 H. W. Foote and S. R. Scholes, J. Am. Chem. Soc., 33 (1911) 1309.
- 2 G. B. Baxter and J. E. Lansing, J. Am. Chem. Soc., 42 (1920) 419.
- 3 F. J. Norton and J. Johnstone, Am. J. Sci., 12 (1926) 467.
- 4 R. E. Wilson, J. Am. Chem. Soc., 43 (1921) 704.
- 5 E. P. Perman and W. D. Urry, Trans. Faraday Soc., 24 (1928) 337.
- 6 W. C. Schumb, J. Am. Chem. Soc., 45 (1923) 342.
- 7 S. El D. Hamad, Thermochim. Acta, 13 (1975) 409.
- 8 K. S. Pitzer and L. V. Coulter, J. Am. Chem. Soc., Vol. 60, (1938) 1310.
- 9 G. Brodale and W. F. Gianque, J. Am. Chem. Soc., 80 (1958) 2042.
- 10 H. W. Ruben, D. H. Templeton, R. D. Rosenstein and I. Olovsson, J. Am. Chem. Soc., 83 $(1961) 820.$
- 11 S. Glasstone, A Text-Book of Physical Chemistry, 2nd ed. Macmillan and Co., 1962.
- 12 W. M. Latimer, The Oxidation States of the Elements and Their Potentials in Aqueous Solutions, 2nd ed., Prentice-Hall, 1952, pp. 39 and 330.